IBM venture to help commuters avoid congestion using predictive data

Posted on April 13, 2011

[IMAGE]Calif-traffic-2.jpg[/IMAGE]IBM announced a new collaboration with the California Department of Transportation (Caltrans) and California Center for Innovative Transportation (CCIT), a research institute at the University of California, Berkeley, to help commuters avoid congestion before their trip begins and enable transportation agencies to better understand, predict and manage traffic flow.

In a technology advance that will ultimately help drivers around the world avoid rush hour traffic jams, IBM Research has developed a new predictive modeling tool that will let drivers quickly access personalized travel recommendations to help them avoid congestion and save time and fuel.

By joining forces, IBM, Caltrans and the Mobile Millennium team within the CCIT hope to provide drivers with valuable predictive information on what traffic patterns are likely to look like — even before they leave work or home and get in their vehicles — rather than discover what has already happened and is being reported.

Using this predictive and analytic traffic tool, transportation agencies and city planners in the future will be able to proactively design, manage and optimize transportation systems to deal with ever-increasing traffic due to population growth and increasing urbanization.

Traffic delays caused by highway incidents such as work zones, crashes or simply by morning and evening rush hours routinely stymie frustrated drivers. Even with advances in GPS navigation, real-time traffic alerts and mapping, daily commute times are often unreliable, and relevant updates on how to avoid congestion often reach commuters when they are already stuck in traffic and it is too late to change course.

This inability to avoid traffic congestion has led to commuters across the U.S. wasting on average almost a week's worth of time, 28 gallons of gas and $808 over the course of a year. (Source: http://mobility.tamu.edu/ums/report/congestion_cost.pdf )

In Silicon Valley, the problem is especially acute. In comparison with cities of a similar size in population, drivers in the city of San Jose waste a cumulative of 10 million more annual hours sitting in traffic jams and suffer a 15 percent higher commute delay per peak-time traveler. (Source: http://mobility.tamu.edu/ums/congestion_data/)

Spanning the San Francisco Bay Area Region, the new Smarter Traveler research initiative collects and analyzes traffic data generated from existing sensors in roads, toll booths, bridges and intersections. This unique project combines that data with locations based on GPS sensors in participant’s cell phones to learn their preferred travel days and routes. Alerts are then automatically delivered via email or text message on the status of the driver’s typical commute before the trip begins, which eliminates potential distraction once a driver is on the road.


These alerts will enable drivers to plan and share alternative travel routes, improve traveler safety and help transportation authorities better predict and reduce bumper-to-bumper traffic before it occurs through improved traffic signal timing, ramp metering and route planning.

The researchers will leverage a first-of-its-kind learning and predictive analytics tool called the IBM Traffic Prediction Tool (TPT), developed by IBM Research, which continuously analyzes congestion data, commuter locations and expected travel start times throughout a metropolitan region that can affect commuters on highways, rail-lines and urban roads.

Through this Smarter Traveler research initiative, scientists could eventually recommend better ways to get to a destination, including directions to a nearby mass transit station, whether a train is predicted to be on time and whether parking may be available at the station.

“Unlike existing traffic alert solutions, we’re helping take the guesswork out of commuting,” said Stefan Nusser, Functional Manager, Almaden Services Research, IBM. “By actively capturing and analyzing the massive amount of data already being collected, we’re blending the automated learning of travel routes with state-of-the-art traffic prediction of those routes to give travelers timely information that can help them make decisions about the best way to get to their destination.”

METRO TV: To watch the IBM Research Smarter Traveler video, click here.

View comments or post a comment on this story. (0 Comments)

More News

Viva BRT service opens in Newmarket, Ont.

The transformation of this section of the BRT corridor, which traverses Davis Drive, includes wider streets, enhanced landscaping, and rapid transit stations designed for safety and comfort.

Fla.'s JTA sets launch date for new BRT service

The 9.4 mile Green Line on the North Corridor will feature direct, high-frequency service; 18 branded stations; complimentary Wi-Fi, a Park-n-Ride lot, and real-time bus arrival information.

Canadian bus service to block Internet streaming

Some customers have reported slow internet service, while others couldn't connect at al, due to Internet streaming issues.

Nova Bus names new east coast regional sales manager

Prior to joinging Nova, John Manzi served as eastern regional transit sales manager for a major transmission manufacturer.

Shuttle, circulator routes drawing thousands of riders in Miami

These services carried more than eight million passengers last year in 27 municipalities and are praised by riders and public officials alike as successful transit programs.

See More News

Post a Comment

Post Comment

Comments (0)

More From The World's Largest Fleet Publisher

Automotive Fleet

The Car and truck fleet and leasing management magazine

Business Fleet

managing 10-50 company vehicles

Fleet Financials

Executive vehicle management

Government Fleet

managing public sector vehicles & equipment



Work Truck Magazine

The number 1 resource for vocational truck fleets

Schoolbus Fleet

Serving school transportation professionals in the U.S. and Canada

LCT Magazine

Global Resource For Limousine and Bus Transportation

Please sign in or register to .    Close